

Syllabus

> Motivation for studying Arithmetic Progression. Derivation of the $\mathrm{n}^{\text {th }}$ term and sum of the first n terms of A.P. and their application in solving daily life problems.

List of Concepts	2018		2019		2020	
	Delhi	Outside Delhi	Delhi	Outside Delhi	Delhi	Outside Delhi
Problems finding $\mathrm{n}^{\text {th }}$ term of the A.P.	1 Q (1 M)	1 Q (1 M)		$\begin{aligned} & 1 Q(1 M) \\ & 1 Q(2 M) \\ & 1 Q(4 M) \end{aligned}$	$\begin{aligned} & 2 \text { Q (1 M) } \\ & 2 Q(3 M) \end{aligned}$	$\begin{aligned} & 2 \text { Q (1 M) } \\ & 2 Q(3 M) \end{aligned}$
Sum of $\mathrm{n}^{\text {th }}$ term of an AP	$\begin{aligned} & 1 Q(2 M) \\ & 1 Q(4 M) \end{aligned}$	$\begin{aligned} & 1 Q(2 M) \\ & 1 Q(3 M) \\ & 1 Q(4 M) \end{aligned}$		$\begin{aligned} & 2 \text { Q (2 M) } \\ & 1 \text { Q (4 M) } \end{aligned}$	4 Q (3 M)	4 Q (3 M)
Word Problem on AP		1 Q (1 M)				

TOPIC - 1
To Find $\boldsymbol{f}^{\text {th }}$ Term of the Arithmetic
Progression

(E) Revision Notes

$>$ An arithmetic progression is a sequence of numbers in which each term is obtained by adding or subtracting a fixed number d to the preceding term, except the first term.
$>$ The difference between the two successive terms of an A.P. is called the common difference.
$>$ Each number in the sequence of arithmetic progression is called a term of an A.P.
$>$ The arithmetic progression having finite number of terms is called a finite arithmetic progression.
$>$ The arithmetic progression having infinite number of terms is called an infinite arithmetic progression.
$>\mathrm{A}$ list of numbers $a_{1}, a_{2}, a_{3}, \ldots .$. is an A.P., if the differences $a_{2}-a_{1}, a_{3}-a_{2}, a_{4}-a_{3}, \ldots$ give the same value i.e., $a_{k+1}-a_{k}$ is same for all different values of k.
$>$ The general form of an A.P. is $a, a+d, a+2 d, a+3 d, \ldots \ldots$
$>$ If the A.P. $a, a+d, a+2 d, \ldots \ldots \ldots, l$ is reversed to $l, l-d, l-2 d, \ldots \ldots \ldots, a$, the common difference changes to negative of original sequence common difference.

E Know the Formulae

$>$ The general $\left(n^{\text {th }}\right)$ term of an A.P. is expressed as:

$$
a_{n}=a+(n-1) d \text { from the starting. }
$$

where, a is the first term and d is the common difference.
$>$ The general $\left(n^{\text {th }}\right)$ term of an A.P. $l, l-d, l-2 d, \ldots \ldots . ., a$ is given by:

$$
a_{n}=l+(n-1)(-d)=l-(n-1) d \ldots \ldots \ldots . . \text { from the end. }
$$

where, l is the last term, d is the common difference and n is the number of terms.

Know the Terms

$>$ A sequence is defined as an ordered list of numbers.
The first, second and third terms of a sequence are denoted by t_{1}, t_{2} and t_{3} respectively.
$>$ If the terms of sequence are connected with plus $(+)$ or minus $(-)$, the pattern is called a series.
Example: $2+4+6+8+$ \qquad is a series.
$>$ The sequence of numbers $0,1,1,2,3,5,8,13, \ldots \ldots$. was discovered by a famous Italian Mathematician Leonasalo Fibonacci, when he was dealing with the problem of rabbit population.
$>$ If the terms of a sequence or a series are written under specific conditions, then the sequence or series is called a progression.
$>$ If a constant is added or subtracted from each term of an A.P., the resulting sequence is also an A.P.
$>$ If each term of an A.P. is multiplied or divided by a constant, the resulting sequence is also an A.P.
$>$ If the $n^{\text {th }}$ term is in linear form i.e., $a n+b=a_{n}$, the sequence is in A.P.
$>$ If the terms are selected at a regular interval, the given sequence is in A.P.
$>$ If three consecutive numbers a, b and c are in A.P., the sum two numbers is twice the middle number i.e., $2 b=a+c$.

How is it done on the GREENBOARD?

Q.1. Which term of the A.P. 6, 13,20 ,

 $27, \ldots .$. is 98 more than its $24^{\text {th }}$ term ?
Solution:

Step I: The given A.P. is 6, 13, 20, 27,
Here first term, a = 6
Common difference, $d=13-6=7$
Step II: The $24^{\text {th }}$ term,

$$
\begin{array}{ll}
a_{24}=a+(24-1) d \\
\text { or, } & a_{24}=6+23 \times 7 \\
& a_{24}=6+161 \\
& a_{24}=167
\end{array}
$$

Step III: Now according to question,

$$
a_{24}+98=a_{n}
$$

$$
167+98=a+(n-1) d
$$

$$
265=6+(n-1) 7
$$

$$
259=(n-1) 7
$$

$$
259
$$

$$
\frac{209}{7}=n-1
$$

$$
37=n-1
$$

$$
n=38
$$

Hence, $38^{\text {th }}$ term is the required term.

Mnemonics

Concept: $n^{\text {th }}$ Term of Arithmetic Progressio $n=a+(n-1) d$.
Nokia Offers Additional Programmers in English To Attract Positive New One Buyer Daily

Interpretation:

Nokia's ' N ' is $\boldsymbol{n}^{\text {th }}$ term.
Offer's ' O ' is of
Additional's ' A ' is Arithmetic Programmer's ' P ' is Progression
In's 'I' is is.
English's ' E ' is Equal
To's ' T ' is To
Attract's ' A ' is a
Positive's ' P ' is +
New's 'N' is \boldsymbol{n}
One buyer is $\mathbf{- 1}$
Daily's ' D ' is d

Very Short Answer Type Questions

1 mark each

AI] Q. 1. Which term of the following A.P. 27, 24, 21, \qquad is zero?

A [CBSE SQP, 2020-21]
Sol. We know that

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
l & =0 \\
0 & =27+(n-1)(-3) \\
30 & =3 n \\
n & =10
\end{align*}
$$

$10^{\text {th }}$ term of the given A.P. is zero.
[CBSE Marking Scheme, 2020-21]

Detailed Solution:

Given A.P. $=27,24,21, \ldots$. .
Here, $a=27$ and $d=24-27=-3$
and, $l=0=a_{n}$

$$
\begin{align*}
\therefore & a_{n} & =a+(n-1) d \\
\Rightarrow & 0 & =27+(n-1)(-3) \\
\Rightarrow & -3 n+3 & =-27 \\
\Rightarrow & -3 n & =-27-3=-30 \\
\Rightarrow & n & =10 .
\end{align*}
$$

Q. 2. In an Arithmetic Progression, if $d=-4, n=7$, $a_{n}=4$, then find a.

A [CBSE SQP, 2020-21]
Sol. We know that

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
4 & =a+6 \times(-4) \\
a & =28
\end{align*}
$$

[CBSE Marking Scheme, 2020-21]
Detailed Solution:
We have, $d=-4, n=7$, and $a_{n}=4$
$\therefore \quad a_{n}=a+(n-1) d$
$\Rightarrow \quad 4=a+(7-1)(-4)$
$\Rightarrow \quad 4=a+6(-4)=a-24$
$\Rightarrow \quad a=4+24$
$\Rightarrow \quad a=28$.

AI] Q. 3. Find the value of x for which $2 x,(x+10)$ and $(3 x+2)$ are the three consecutive terms of an A.P.

R [CBSE Delhi, Set-I, 2020] Sol. $\because 2 x,(x+10)$ and $(3 x+2)$ are in A.P.

$$
\begin{array}{lrlrl}
\Rightarrow & & (x+10)-2 x & =(3 x+2)-(x+10) & 1 / 2 \\
\Rightarrow & & -x+10 & =2 x-8 \\
\Rightarrow & & -x-2 x & =-8-10 & \\
\Rightarrow & & -3 x & =-18 & \\
& \text { Hence, } & & x & =6 .
\end{array}
$$

Q.4. If the first term of an A.P. is p and the common difference is q, then find its $10^{\text {th }}$ term.

R [CBSE Delhi, Set-I, 2020]
Sol. We have, first term $(a)=p$,
Common difference $(d)=q$
and
$n=10$
Then,
$a_{n}=a+(n-1) d \quad 1 / 2$
$\Rightarrow \quad a_{10}=p+(10-1) q$
$\Rightarrow \quad a_{10}=p+9 q$.
$1 / 2$
Q. 5. Find the common difference of the A.P. $\frac{1}{p}, \frac{1-p}{p}$, $\frac{1-2 p}{p}$, \qquad ...

R [CBSE OD Set-I, 2020]
Sol. Given A.P. $=\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{p} \ldots$
Here, let

$$
a_{1}=\frac{1}{p} \text { and } a_{2}=\frac{1-p}{p}
$$

\therefore Common difference $=a_{2}-a_{1}=\frac{1-p}{p}-\frac{1}{p}$

$$
=\frac{1-p-1}{p}
$$

$$
=\frac{-p}{p}
$$

$$
=-1
$$

AI] Q. 6. Find the $n^{\text {th }}$ term of the A.P. $a, 3 a, 5 a$, \qquad ..
A [CBSE SQP, 2020-21]
Sol. Given

$$
\text { A.P. }=a, 3 a, 5 a, \ldots
$$

Here first term, $\quad a=a$ and $d=3 a-a=2 a \quad 1 / 2$
$\therefore \quad n^{\text {th }}$ term $=a+(n-1) d$

$$
\begin{align*}
& =a+(n-1) 2 a \\
& =a+2 n a-2 a \\
& =2 n a-a \\
& =(2 n-1) a .
\end{align*}
$$

Q. 7. How many two digits numbers are divisible by 3 ?

U [CBSE Delhi Set-1, 2019]
Sol. Numbers are 12, 15, 18, ..., 99

$$
\begin{array}{ll}
\therefore & 99=12+(n-1) \times 3 \\
\Rightarrow & n=30
\end{array}
$$

[CBSE Marking Scheme, 2019]

Detailed Solution:

Numbers divisible by 3 are 3, 6, 9, 12, 15, -------, 96, 99 Lowest two digit number divisible by 3 . is 12 . and highest two digit number divisible by 3 is 99 .

Hence, the sequence start with 12 ends with 99 and common difference is 3 .
So, the A.P. will be $12,15,18,----, 96,99$
Here, $a=12, d=3, l=99$

$$
\begin{array}{rlrl}
\therefore & & l & =a+(n-1) d \\
\therefore & 99 & =12+(n-1) 3 \\
\Rightarrow & 99-12 & =3(n-1) \\
\Rightarrow & & n-1 & =\frac{87}{3} \\
\Rightarrow & & n-1 & =29 \\
\Rightarrow & n & =30
\end{array}
$$

Therefore, there are 30, two digit numbers divisible by 3 .
Q. 8. In an A.P., if the common difference $(d)=-4$, and the seventh term $\left(a_{7}\right)$ is 4 , then find the first term.

U [Delhi/OD, 2018]
Sol. Since, $\quad a+6(-4)=4$
$\Rightarrow \quad a=28$
[CBSE Marking Scheme, 2018]

Detailed Solution:

Topper Answer, 2018

Q. 9. Which term of the A.P. 8, 14, 20, 26, will be 72 more than its $41^{\text {st }}$ term.

A [CBSE Outside Delhi Set-II 2017]
[CBSE Board Comptt. Set-III, 2017]
Sol. Given $a=8$ and $d=6$.
Let $n^{\text {th }}$ term be 72 more than its $41^{\text {th }}$ term.

$$
\begin{aligned}
\therefore \quad t_{n}-t_{41} & =72 \\
8+(n-1) 6-(8+40 \times 6) & =72 \\
8+(n-1) 6 & =320 \\
(n-1) 6 & =312 \\
n-1 & =52 \\
n & =53
\end{aligned}
$$

[A] Q. 10. Write the $n^{\text {th }}$ term of the A.P. $\frac{1}{m}, \frac{1+m}{m}$,

$$
\frac{1+2 m}{m}, \ldots . .
$$

A [CBSE Delhi Comptt. Set-I, II, III, 2017]
Sol. We have,

$$
\begin{aligned}
& a=\frac{1}{m} \\
& d=\frac{1+m}{m}-\frac{1}{m}=1
\end{aligned}
$$

$\therefore \quad a_{n}=\frac{1}{m}+(n-1) 1$
Hence,

$$
\begin{align*}
a_{n} & =\frac{1}{m}+n-1 \\
& =\frac{1+(n-1) m}{m} \tag{1}
\end{align*}
$$

Q. 11. If the $n^{\text {th }}$ term of the A.P. $-1,4,9,14, \ldots$. is 129 .

Find the value of n.
A [CBSE Delhi Comptt. Set I, II, III, 2017]
Sol. Given, $a=-1$ and $d=4-(-1)=5$
$a_{n}=-1+(n-1) \times 5=1291 / 2$
or, $\quad(n-1) 5=130$

$$
(n-1)=26
$$

$$
n=27
$$

Hence, $27^{\text {th }}$ term $=129$.
[CBSE Marking Scheme, 2017]
Q. 12. What is the common difference of an A.P. in which $a_{21}-a_{7}=84$? A [CBSE Outside Delhi Set-I, II, III, 2017]

而	Topper Answer, 2017
Sol.	Lel a be $1^{\text {st }}$ term and d be the common difference.
	$a_{21}-a_{7}=84$
	$a+(21-1) d=[a+(7-1) d]=84$
	$\alpha+20 d-a,-6 d=84$
	$14 d=84$
	d =6
	\therefore common difference is 6

Q. 13. For what value of k will $k+9,2 k-1$ and $2 k+7$ are the consecutive terms of an A.P.?

C + A [OD Set II, 2016]

Q. 14. Find the tenth term of the sequence: $\sqrt{2}, \sqrt{8}, \sqrt{18}, \ldots$.

U [SQP, 2016] [Foreign Set-I, II, III, 2015]
Sol. Given sequence is an A.P.

$$
\sqrt{2}, \sqrt{8}, \sqrt{18}, \ldots=\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2} \ldots
$$

Hence,

$$
a=\sqrt{2}, d=\sqrt{2} \text { and } n=10
$$

\because

$$
a_{n}=a+(n-1) d
$$

or,

$$
a_{10}=\sqrt{2}+(10-1) \sqrt{2}
$$

$$
=\sqrt{2}+9 \sqrt{2}
$$

$$
=10 \sqrt{2}
$$

Hence,

$$
a_{10}=\sqrt{200}
$$

Q. 15. Is series $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots$. an A.P. ? Give reason.

U [CBSE, Term-2, 2015]
Sol. Common difference,

$$
\begin{aligned}
d_{1} & =\sqrt{6}-\sqrt{3} \\
& =\sqrt{3}(\sqrt{2}-1)
\end{aligned}
$$

Again,

$$
\begin{aligned}
d_{2} & =\sqrt{9}-\sqrt{6} \\
& =3-\sqrt{6} \\
d_{3} & =\sqrt{12}-\sqrt{9} \\
& =2 \sqrt{3}-3
\end{aligned}
$$

As common differences are not equal. Hence, the given series is not an A.P.
[CBSE Marking Scheme, 2015] 1

Short Answer Type Questions-I

[AI) Q. 1. Find the number of natural numbers between 102 and 998 which are divisible by 2 and 5 both.

A [CBSE SQP, 2020]

Sol. 110, 120, 130,, 990
$a_{n}=990 \Rightarrow 110+(n-1) \times 10=990 \quad 1$
$n=89 \quad 1$
[CBSE SQP Marking Scheme, 2020]

Detailed Solution:

The number which ends with 0 is divisible by 2 and 5 both.
\therefore Such numbers between 102 and 998 are:
110, 120, 130, \qquad , 990.
Last term, $\quad a_{n}=990$

$$
a+(n+1) d=990
$$

$$
110+(n-1) \times 10=990
$$

$$
110+10 n-10=990
$$

$$
10 n+100=990
$$

$$
10 n=990-100
$$

$$
10 n=890
$$

$$
n=\frac{890}{10}=89
$$

(AI) Q. 2. Show that $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$ are in A.P.

A [CBSE Delhi Set-I, 2020]
Sol. Given: $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$
Common difference,

$$
\begin{align*}
d_{1} & =\left(a^{2}+b^{2}\right)-(a-b)^{2} \\
& =a^{2}+b^{2}-\left(a^{2}+b^{2}-2 a b\right) \\
& =a^{2}+b^{2}-a^{2}-b^{2}+2 a b \\
& =2 a b \\
d_{2} & =(a+b)^{2}-\left(a^{2}+b^{2}\right) \\
& =a^{2}+b^{2}+2 a b-a^{2}-b^{2} \\
& =2 a b \\
d_{1} & =d_{2}
\end{align*}
$$

and

Since,
Hence, $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$ are is an A.P. 1
Hence Proved.
Q. 3. Which term of the A.P. 3, 15, 27, 39,... will be 120 more than its $21^{\text {st }}$ term?

A [CBSE Delhi Set-I, 2019]
Sol.

$$
\begin{align*}
a_{n} & =a_{21}+120 \\
& =(3+20 \times 12)+120 \\
& =363 \tag{1}
\end{align*}
$$

$$
\therefore \quad 363=3+(n-1) \times 12
$$

$$
\Rightarrow \quad n=31
$$

or $31^{\text {st }}$ term is 120 more than a_{21}.
[CBSE Marking Scheme, 2019]

Detailed Solution:

Given A.P. is: $3,15,27,39$
Here, first term, $a=3$ and common difference, $d=12$
Now, $21^{\text {st }}$ term of A.P. is

$$
\begin{aligned}
& t_{21}
\end{aligned}=a+(21-1) d \quad\left[t_{n}=a+(n-1) d\right]
$$

Therefore, $21^{\text {st }}$ term is 243
We need to calculate term which is 120 more than $21^{\text {st }}$ term
i.e., it should be $243+120=363$

Therefore, $t_{n}=363$

$$
\begin{aligned}
\therefore & t_{n} & =a+(n-1) d \\
\Rightarrow & 363 & =3+(n-1) 12 \\
\Rightarrow & 360 & =12(n-1) \\
\Rightarrow & n-1 & =30 \\
\Rightarrow & n & =31
\end{aligned}
$$

So, $31^{\text {st }}$ term is 120 more than $21^{\text {st }}$ term. $\mathbf{1}$
Q. 4. Find the $20^{\text {th }}$ term from the last term of the A.P.:
$3,8,13, \ldots . . .253$.
A [CBSE SQP, 2018]
Sol. $20^{\text {th }}$ term from the end $=l-(n-1) d$

$$
\begin{array}{lr}
=253-19 \times 5 & \mathbf{1} \\
=158 & 1 / 2
\end{array}
$$

$$
1 / 2
$$

[CBSE Marking Scheme, 2018]

Detailed Solution:

Given A.P.: 3, 8, 13, \qquad 253
Here, first term $(a)=3$, common difference $(d)=$ $8-3=5$ and last term $(l)=253$
Then, $20^{\text {th }}$ term from the end of the A.P.

$$
\begin{aligned}
& =l-(n-1) d \\
& =253+(20-1) 5 \\
& =253-95 \\
& =158 .
\end{aligned}
$$

1
Q. 5. If 7 times the $7^{\text {th }}$ term of an A.P. is equal to 11 times its $11^{\text {th }}$ term, then find its $18^{\text {th }}$ term.

A [CBSE SQP-2018] [Foreign Set-2017]
[CBSE Board Term-II, 2016]
Sol.

$$
7 a_{7}=11 a_{11}
$$

$$
\begin{align*}
\Rightarrow & 7(a+6 d) & =11(a+10 d) \tag{1}\\
\Rightarrow & a+17 d & =0 \\
\therefore & a_{18} & =0
\end{align*}
$$

$$
1
$$

[CBSE Marking Scheme, 2018]
Detailed Solution:
Given,

$$
7 a_{7}=11 a_{11}
$$

$$
\because \quad a_{n}=a+(n-1) d
$$

Then, $\quad 7[a+(7-1) d]=11[a+(11-1) d]$
$\Rightarrow \quad 7(a+6 d)=11(a+10 d)$
$\Rightarrow \quad 7 a+42 d=11 a+110 d$
$\Rightarrow \quad 11 a-7 a=42 d-110 d$
$\Rightarrow \quad 4 a=-68 d$
$\Rightarrow \quad a=-17 d$
$\Rightarrow \quad a+17 d=0$
i.e., $\quad a+(18-1) d=0$

Hence, $\quad a_{18}=0$.
Q. 6. Find how many integers between 200 and 500 are divisible by 8.

A [Board Delhi comptt. Set-I, II, III, 2017]
Sol. Integers divisible by 8 are 208, 216, 224,, 496. 1 Which is an A.P.
Given: $a=208, d=8$ and $l=496$
Let the numbers of terms in A.P. be n.

$$
\begin{array}{rlrl}
\because & a_{n} & =a+(n-1) d=l \\
\therefore & 208+(n-1) d & =496 \\
(n-1) 8 & =496-208 \\
n-1 & =\frac{288}{8} \\
& & =36 \\
n & =36+1=37
\end{array}
$$

Q. 7. The fifth term of an A.P. is 26 and its $10^{\text {th }}$ term is 51 . Find the A.P.

A [OD Comptt. Set-II, 2017]

Sol. Here,
and

$$
\begin{align*}
a_{5} & =a+4 d=26 \tag{i}\\
a_{10} & =a+9 d=51 \tag{ii}
\end{align*}
$$

Solving Eqns. (i) and (ii), we get
or,

$$
5 d=25
$$

$$
d=5
$$

and $a=6$
Hence, the A.P. is $6,11,17$ $1 / 2$
[CBSE Marking Scheme, 2017]
Q. 8. How many two digit numbers are divisible by 7 ?

A [CBSE SQP, 2016]
Sol. Two digit numbers which are divisible by 7 are: $14,21,28, \ldots . . ., 98$. It forms an A.P.

Here,		a	$=14, d=7$ and $a_{n}=98$
	$1 / 2$		
Since,	a_{n}	$=a+(n-1) d$	
			$1 / 2$
98	$=14+(n-1) 7$		
or,	$98-14$	$=7 n-7$	
or,	$84+7$	$=7 n$	
	$7 n$	$=91$	$1 / 2$

[CBSE Marking Scheme, 2016]
(AI) Q. 9. In a certain A.P. $32^{\text {th }}$ term is twice the $12^{\text {th }}$ term. Prove that $70^{\text {th }}$ term is twice the $31^{\text {st }}$ term.

A [Board Term-2, 2015]
Sol. Let the $1^{\text {st }}$ term be a and common difference be d.
According to the question, $a_{32}=2 a_{12}$
$\therefore \quad a+31 d=2(a+11 d)$

$$
a+31 d=2 a+22 d
$$

$$
\begin{equation*}
a=9 d \tag{1}
\end{equation*}
$$

Again,

$$
\begin{aligned}
a_{70} & =a+69 d \\
& =9 d+69 d=78 d \\
a_{31} & =a+30 d \\
& =9 d+30 d=39 d
\end{aligned}
$$

Hence,
$a_{70}=2 a_{31} \quad$ Hence Proved. 1
[CBSE Marking Scheme, 2015]
[AI] Q. 10. The $8^{\text {th }}$ term of an A.P. is zero. Prove that its $38^{\text {th }}$ term is triple of its $18^{\text {th }}$ term.

A [CBSE Board Term-2, 2015]

Sol. Given, $a_{8}=0$ or, $a+7 d=0$ or, $a=-7 d \quad 1 / 2$ or, $\quad a_{38}=a+37 d$ or, $\quad a_{38}=-7 d+37 d=30 d \quad 1 / 2$ And, $\quad a_{18}=a+17 d$

$$
=-7 d+17 d=10 d \quad 1 / 2
$$

or, $\quad a_{38}=30 d=3 \times 10 d=3 \times a_{18}$ $\therefore \quad a_{38}=3 a_{18}$. Hence Proved. $1 / 2$
[CBSE Marking Scheme, 2015]
Q. 11. The fifth term of an A.P. is 20 and the sum of its seventh and eleventh terms is 64 . Find the common difference.

A [Foreign Set II, 2015]
[CBSE Board Term-II, 2015]
Sol. Let the first term be a and common difference be d.
Then, $\quad a+4 d=20$
...(i) $1 / 2$
and $a+6 d+a+10 d=64$

$$
\begin{equation*}
a+8 d=32 \tag{ii}
\end{equation*}
$$

Solving equations (i) and (ii), we get

$$
d=3
$$

Hence, common difference, $d=3$
[CBSE Marking Scheme, 2015]
Q. 12. Find the middle term of the A.P. 213, 205, 197, 37.

A [CBSE Delhi Board Term, 2015]
Sol. Here, $a=213, d=205-213=-8$ and $l=37$
Let the number of terms be n.
$\because \quad l=a+(n-1) d$
$\therefore \quad 37=213+(n-1)(-8)$
or, $\quad 37-213=-8(n-1)$
or, $\quad n-1=\frac{-176}{-8}=22$
or, $\quad n=22+1=23$ $1 / 2$

The middle term will be $=\frac{23+1}{2}=12^{\text {th }}$ $1 / 2$

$$
\therefore \quad \begin{aligned}
a_{12} & =a+(n-1) d \\
& =213+(12-1)(-8) \\
& =213-88 \\
& =125
\end{aligned}
$$

Thus, the middle term will be 125 .
[CBSE Marking Scheme, 2015]

Short Answer Type Questions-II

3 marks each

[AI] Q. 1. Which term of the A.P. $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .$. is the first negative term.

A [CBSE OD Set-III, 2020]
Sol. Here,

$$
\text { First term, } a=20
$$

and Common difference, $d=\frac{77}{4}-20=-\frac{3}{4}$
Let

$$
\begin{aligned}
& t_{n}<0 \\
& t_{n}=a+(n-1) d \quad 1 / 2
\end{aligned}
$$

$$
\begin{array}{rrr}
\therefore & 20+(n-1)\left(-\frac{3}{4}\right) & <0 \\
\Rightarrow & 80-3 n+3 & <0 \\
\Rightarrow & 83-3 n & <0 \\
\Rightarrow & n & >\frac{83}{3} \\
\Rightarrow & n & >27.6 \\
\Rightarrow & n & =28
\end{array}
$$

Hence, the first negative term is 28 .
[AI] Q. 2. Find the middle term of the A.P. 7, 13, 19,, 247.
U [CBSE OD Set-III, 2020]
Sol. In this A.P., $a=7, d=13-7=6$ \square $1 / 2$

$$
\begin{aligned}
\text { and } & t_{n} & =247 \\
\because & t_{n} & =a+(n-1) d \\
\therefore & 247 & =7+(n-1) 6 \\
\Rightarrow & 6(n-1) & =240 \\
\Rightarrow & n-1 & =40 \\
\Rightarrow & n & =41
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { the middle term } & =\frac{n+1}{2} \\
& =\frac{41+1}{2} \\
& =\frac{42}{2} \\
& =21
\end{aligned}
$$

Q. 3. For what value of n, are the $n^{\text {th }}$ terms of two A.Ps $63,65,67, \ldots$. and $3,10,17, \ldots$. equal ?

C + A [CBSE Outside Delhi Set-III, 2017]

Q. 4. If the $10^{\text {th }}$ term of an A.P. is 52 and the $17^{\text {th }}$ term is 20 more than the $13^{\text {th }}$ term, find A.P.

A [CBSE, Outside Delhi Set-I 2017]
Sol.

$$
\begin{equation*}
a_{10}=52 \tag{i}
\end{equation*}
$$

or, $\quad a+9 d=52$
Also $\quad a_{17}-a_{13}=20$
$a+16 d-(a+12 d)=20$

$$
4 d=20
$$

$$
d=5
$$

Substituting, the value of d in (i), we get

$$
\begin{array}{rlr}
& a & =7 \\
\text { Hence, } & \text { A.P. } & =7,12,17,22 \ldots . .
\end{array}
$$

[CBSE Marking Scheme, 2017]
Q. 5. The ninth term of an A.P. is equal to seven times the second term and twelfth term exceeds five times the third term by 2 . Find the first term and the common difference. A [CBSE SQP, 2016]

Sol. Let the first term of A.P. be a and common difference be d.
Given, $\quad a_{9}=7 a_{2}$
or, $\quad a+8 d=7(a+d)$
and

$$
\begin{equation*}
a_{12}=5 a_{3}+2 \tag{i}
\end{equation*}
$$

Again, $\quad a+11 d=5(a+2 d)+2$
From (i), $\quad a+8 d=7 a+7 d$
$-6 a+d=0$
From (ii), $\quad a+11 d=5 a+10 d+2$

$$
\begin{equation*}
-4 a+d=2 \tag{iv}
\end{equation*}
$$

Subtracting (iv) from (iii), we get

$$
\begin{array}{rlrl}
& & -2 a & =-2 \\
\text { or, } & a & =1
\end{array}
$$

From (iii),

$$
\begin{align*}
-6+d & =0 \\
d & =6
\end{align*}
$$

Hence, first term $=1$ and common difference $=6$
[CBSE Marking Scheme, 2016]
Q. 6. The digits of a positive number of three digit number are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

A [CBSE Delhi Set II, 2016] Topper Answer, 2016

Sol. - Leet three digit of 3 - digit no $v e=a-d, a, a+c$. Thur sum $=15$
$a-d+a+a+d=15 \Rightarrow 3 a=15 \Rightarrow a=5$
Required 3 digit no $=100(a-d)+10 a+a+d$
$100 a-1,00 d+10 a+a+d$

3
Q. 7. Divide 56 in four parts in A.P. such that the ratio of the product of their extremes ($1^{\text {st }}$ and $4^{\text {th }}$) to the product of middle ($2^{\text {nd }}$ and $3^{\text {rd }}$) is $5: 6$.

U [Foreign Set I, 2016]
Sol. Let the four parts be

$$
\begin{align*}
& a-3 d, a-d, a+d \text { and } a+3 d \\
& \therefore a-3 d+a-d+a+d+a+3 d=56 \\
& \text { or, } \quad 4 a=56 \\
& \tag{1}
\end{align*}
$$

Hence, four parts are $14-3 d, 14-d, 14+d$ and $14+3 d$.
Now, according to question,

$$
\left.\begin{array}{rlrl}
& & \frac{(14-3 d)(14+3 d)}{(14-d)(14+d)} & =\frac{5}{6} \\
& \text { or, } & \frac{196-9 d^{2}}{196-d^{2}} & =\frac{5}{6} \\
& \text { or, } & 6\left(196-9 d^{2}\right) & =5\left(196-d^{2}\right) \\
& \text { or, } & 6 \times 196-54 d^{2} & =5 \times 196-5 d^{2} \\
\text { or, } & 6 \times 196-5 \times 196 & =54 d^{2}-5 d^{2} \\
& \text { or, } & (6-5) \times 196 & =49 d^{2} \\
& \text { or, } & & d^{2}
\end{array}\right)=\frac{196}{49}=44
$$

or, $\quad d= \pm 2$
1
\therefore The four parts are
$\{14-3(\pm 2)\},\{14-(\pm 2)\}$
Hence, first possible division will be $8,12,16$ and 20.
and second possible division will be 20, 16, 12 and 8.
Q. 8. The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are a, b and c respectively. Show that $a(q-r)+b(r-p)+c(p-q)$ $=0$.

U] [Foreign Set II, 2016]
Sol. Let the first term be a^{\prime} and the common difference be d.
$a=a^{\prime}+(p-1) d, b=a^{\prime}+(q-1) d$ and $c=a^{\prime}+(r-1) d$

$$
a(q-r)=\left[a^{\prime}+(p-1) d\right][q-r]
$$

$$
b(r-p)=\left[a^{\prime}+(q-1) d\right][r-p]
$$

and $\quad c(p-q)=\left[a^{\prime}+(r-1) d\right][p-q] \quad 1 / 2$
$\therefore a(q-r)+b(r-p)+c(p-q)=a^{\prime}[q-r+r-p+p-$
$q]+d[(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)]$
$=a^{\prime} \times 0+d[p q-p r+q r-p q+p r-q r+(-q+r-r$
$+p-p+q)]=0 \quad$ Hence Proved. $1 / 2$
[CBSE Marking Scheme, 2016]
Q. 9. Prove that the $n^{\text {th }}$ term of an A.P. can not be $n^{2}+1$.

Justify your answer. [CBSE Board Term-2 2015]
Sol. Let $n^{\text {th }}$ term of A.P.,

$$
a_{n}=n^{2}+1
$$

Putting the values of $n=1,2,3, \ldots . .$. , we get

$$
\begin{aligned}
& a_{1}=1^{2}+1=2 \\
& a_{2}=2^{2}+1=5 \\
& a_{3}=3^{2}+1=10
\end{aligned}
$$

The obtained sequence

$$
=2,5,10,17, \ldots \ldots \ldots .
$$

Their common difference

$$
\begin{array}{lll}
& & =a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3} \\
\text { or, } & 5-2 \neq 10-5 \neq 17-10 \\
\therefore & & \\
\therefore & \neq 5 \neq 7 \tag{1}
\end{array}
$$

Since the common difference are not equal.
Hence, $n^{2}+1$ is not a form of $n^{\text {th }}$ term of an A.P. 1
[CBSE Marking Scheme, 2015]

Long Answer Type Questions

5 marks each

[AI] Q. 1. The sum of four consecutive numbers in A.P. is 32 and the ratio of the product of the first and last term to the product of two middle terms is $7: 15$. Find the numbers. U [CBSE Delhi Set-I, 2020]
[CBSE Delhi \& OD, 2018]
Sol. Let the four consecutive terms of A.P. be $(a-3 d),(a-d),(a+d)$ and $(a+3 d)$. 1

By given conditions
$a-3 d+a-d+d+a+3 d=32$
$\Rightarrow \quad 4 a=32$

$$
\begin{array}{rlrl}
\Rightarrow & a & =8 & \mathbf{1} \\
\text { And } & & & \mathbf{1} \\
\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)} & =\frac{7}{15} & \\
\frac{a^{2}-9 d^{2}}{a^{2}-d^{2}} & =\frac{7}{15} & \\
d^{2} & =4 & \\
d & = \pm 2 & \mathbf{1}
\end{array}
$$

Hence, the numbers are $2,6,10$ and 14 or $14,10,6$ and 2.
[CBSE Marking Scheme, 2018]
Q. 2. If m times the $m^{\text {th }}$ term of an Arithmetic Progression is equal to n times its $n^{\text {th }}$ term and $m \neq n$, show that the $(m+n)^{\text {th }}$ term of the A.P. is zero.
[CBSE Term I, II, III, 2019]

Topper Answer, 2019

Sol.

5
Q. 3. An A.P. consists of 50 terms of which $3^{\text {rd }}$ term is $\mathbf{1 2}$ and last term is 106 . Find the $29^{\text {th }}$ term.

U [CBSE SQP, 2018]
Sol. Given, $n=50, a_{3}=12$ and $a_{50}=106$
Then

$$
a+2 d=12
$$

and $\quad a+49 d=106$
On solving, we get $d=2$ and $a=8$

$$
\begin{aligned}
a_{29} & =a+28 d \\
& =8+28 \times 2 \\
& =64
\end{aligned}
$$

[CBSE Marking Scheme, 2018]
Q. 4. The sum of three numbers in A.P. is 12 and sum of their cubes is 288 . Find the numbers.

A [Delhi Set III, 2016]
Sol. Let the three numbers in A.P. be $a-d, a$ and $a+d$.
Then, their sum i.e., $3 a=12$
or,

$$
a=4
$$

Also, $(4-d)^{3}+4^{3}+(4+d)^{3}=288$
or, $64-48 d+12 d^{2}-d^{3}+64+64+48 d+12 d^{2}+d^{3}$

$$
=288
$$

or,
$24 d^{2}+192=288$
or, $\quad d^{2}=4$
$d= \pm 2$
Hence, the numbers are 2,4 and 6, or 6, 4 and 2. 1
[CBSE Marking Scheme, 2016]
[AI) Q.5. Find the value of a, b and c such that the numbers $a, 7, b, 23$ and c are in A.P.

U [CBSE Board Term-2, 2015]
Sol. Since, $a, 7, b, 23$ and c are in A.P.
Let the common difference be d

$$
\begin{array}{lrr}
\therefore & a+d=7 & \ldots(\text { (i) } 1 / 2 \\
\text { and } & a+3 d=23 & \ldots .(\text { ii) } 1 / 2
\end{array}
$$

From (i) and (ii), we get

$$
\begin{equation*}
a=-1 \text { and } d=8 \tag{1}
\end{equation*}
$$

Again,

$$
b=a+2 d
$$

$$
b=-1+2 \times 8
$$

or, $\quad b=-1+16$
or, $\quad b=15$
$\therefore \quad c=a+4 d$
$=-1+4 \times 8$
$=-1+32$
$c=31 \quad 1$
$\therefore a=-1, b=15$ and $c=31 \quad 1$
[CBSE Marking Scheme, 2015]

TOPIC - 2
 Sum of n Terms of an Arithmetic Progression

Know the Formulae

$>$ Sum of n terms of an A.P is given by:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

where, a is the first term, d is the common difference and n is the total number of terms.
> Sum of n terms of an A.P. when first and last term is given.

$$
S_{n}=\frac{n}{2}[a+l]
$$

where, a is the first term and l is the last term.
$>$ The $n^{\text {th }}$ term of an A.P is the difference of the sum of first n terms and the sum to first $(n-1)$ terms of it. i.e.,

$$
a_{n}=S_{n}-S_{n-1} .
$$

How is it done on the GREENBOARD?

Q.1. Find the number of terms in the A.P $54,51,48$, whose sum is 513 . Also, give the reason of double answer.
Solution:
Step I: The given A.P. is $54,51,48, \ldots .$. Here a = 54, d=51-54 =-3
Sum required is 513 .
Step II: Applying the sum formula

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
513 & =\frac{n}{2}[2 \times 54+(n-1)(-3)] \\
1026 & =n[108-3 n+3]
\end{aligned}
$$

$$
1026=n[111-3 n]
$$

$$
1026=111 n-3 n^{2}
$$

or, $\quad 3 n^{2}-111 n+1026=0$
or, $\quad 3\left[n^{2}-37 n+342\right]=0$
or, $\quad n^{2}-37 n+342=0$
Step III: Factorizing the quadratic equation

$$
\begin{aligned}
& \mathrm{n}^{2}-19 \mathrm{n}-18 \mathrm{n}+342=0 \\
& \mathrm{n}(\mathrm{n}-19)-18(\mathrm{n}-19)=0
\end{aligned}
$$

or, $\quad(n-19)(n-18)=0$
or,

$$
\mathrm{n}=18 \text { or } 19
$$

Hence, the required number of terms will be 18 or 19 .
$19^{\text {th }}$ term of A.P. is zero hence double answers are correct.

Very Short Answer Type Questions

Q. 1. Find the sum of the first 10 multiples of 6 .

A [CBSE Board Term, 2019]

Q. 2. If nth term of an A.P. is $(2 n+1)$, what is the sum of its first three terms?

A [CBSE SQP, 2018]

Sol. Since, $a_{1}=3, a_{2}=5$ and $a_{3}=7$

$$
1 / 2
$$

$$
S_{3}=\frac{3}{2}(3+7)=15
$$

Detailed Solution:

$$
\begin{array}{ll}
\because & a_{n}=(2 n+1) \\
\therefore & a_{1}=2 \times 1+1=3
\end{array}
$$

Since, $\quad S_{n}=\frac{n}{2}[a+l]$
Hence,

$$
S_{3}=\frac{3}{2}[3+7]
$$

$$
S_{3}=15 .
$$

Q. 3. If the first term of an A.P. is -5 and the common
difference is 2 , then find the sum of the first 6 terms.

Sol. In the given A.P., $a=-5$ and $d=2$

Thus,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{6} & =\frac{6}{2}[2 \times(-5)+(6 \\
& =3(-10+10) \\
& =0 .
\end{aligned}
$$

$$
\therefore \quad S_{6}=\frac{6}{2}[2 \times(-5)+(6-1) \times 2]
$$

Short Answer Type Questions-I

2 marks each

[AI) Q. 1. Find the sum of first 20 terms of the following A.P.:

$$
1,4,7,10, \ldots
$$

A [CBSE Delhi Set-II, 2020]
Sol. Given A.P.: 1, 4, $7,10, \ldots$
Here, $a=1, d=4-1=3$ and $n=20$
\therefore The sum of first 20 terms,

$$
\begin{align*}
S_{20} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{20}{2}[2 \times 1+(20-1) 3] \\
& =10(2+57) \\
& =10 \times 59 \\
& =590 . \tag{1}
\end{align*}
$$

(AI) Q. 2. The sum of the first 7 terms of an A.P. is 63 and that of its next 7 terms is 161 . Find the A.P. .

A [CBSE Delhi Set-IIII, 2020]
Sol. Since,

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Given,

$$
S_{7}=63
$$

So,

$$
\begin{align*}
S_{7} & =\frac{7}{2}[2 a+6 d] \\
& =63 \tag{i}
\end{align*}
$$

or, $\quad 2 a+6 d=18$
Now, sum of 14 terms is:

$$
\begin{array}{rlrl}
S_{14} & =S_{\text {first } 7 \text { terms }}+S_{\text {next } 7 \text { terms }} \\
& =63+161=224 \\
\therefore \quad & & \frac{14}{2}[2 a+13 d] & =224 \\
\Rightarrow \quad & & \tag{ii}\\
& 2 a+13 d & =32
\end{array}
$$

On subtracting (i) from (ii), we get

$$
\begin{array}{rlrl}
& (2 a+13 d)-(2 a+6 d) & =32-18 \\
\Rightarrow & & 7 d & =14 \\
\Rightarrow & & d & =2
\end{array}
$$

Putting the value of d in (i), we get

$$
a=3
$$

Hence, the A.P. will be: $3,5,7,9, \ldots$.
(AI) Q. 3. If S_{n}, the sum of first n terms of an A.P. is given by $S_{n}=3 n^{2}-4 n$. Find the $n^{\text {th }}$ term.

A [CBSE Delhi Set-I, 2019]

Sol.

$$
\begin{array}{lll}
& a_{1}=S_{1}=3-4=-1 & 1 / 2 \\
& & a_{2}=S_{2}-S_{1} \\
& =\left[3(2)^{2}-4(2)\right]-(-1)=5 & 1 / 2 \\
& d & =a_{2}-a_{1}=6
\end{array}
$$

Hence $\quad a_{n}=-1+(n-1) \times 6=6 n-7 \quad 1 / 2$
Alternate method:

$$
\begin{aligned}
& S_{n}=3 n^{2}-4 n \\
& \therefore \quad S_{n-1}=3(n-1)^{2}-4(n-1) \\
& =3 n^{2}-10 n+7 \quad 1 \\
& \text { Hence } \\
& a_{n}=S_{n}-S_{n-1} \quad 1 / 2 \\
& =\left(3 n^{2}-4 n\right)-\left(3 n^{2}-10 n+7\right) \\
& =6 n-7 \quad 1 / 2
\end{aligned}
$$

[CBSE Marking Scheme, 2019]
Detailed Solution:
Given, $S_{n}=3 n^{2}-4 n$
Put $n=1, S_{1}=3 \times 1^{2}-4 \times 1=-1 \quad 1 / 2$
So, sum of first term of A.P. is -1 .
But sum of first term will be the first term,
\therefore First team, $a_{1}=-1$
Put $n=2, S_{2}=3 \times 2^{2}-4 \times 2=4 \quad 1 / 2$
\therefore Sum of first two terms is 4 .
\therefore First term + Second term $=4$
$\therefore \quad-1+a_{2}=4$
$\Rightarrow \quad a_{2}=5 \quad 1 / 2$
Hence, Common difference, $d=a_{2}-a_{1}=5-(-1)=6$

$$
\begin{array}{lrl}
\therefore & n^{\text {th }} \text { term, } a_{n} & =a_{1}+(n-1) d \\
\text { i.e., } & & a_{n} \\
\Rightarrow & & -1+(n-1) 6 \\
\Rightarrow & & a_{n}
\end{array}=6 n-7
$$

Therefore, $n^{\text {th }}$ term is $6 n-7$.

COMMONLY MADE ERROR

- Some students do not know the basic concepts of arithmetic progression. Many students try to solve with wrong method.

ANSWERING TIP

- Learn the concept of Arithmetic progression with different examples.
Q. 4. Find the sum of first 8 multiples of 3 .

A [Delhi/OD 2018] [Delhi Comptt. Set-I, 2017]
Sol. Here,

$$
\begin{align*}
S & =3+6+9+12+\ldots+24 \\
& =3(1+2+3+\ldots+8) \tag{1}\\
& =3 \times \frac{8 \times 9}{2} \\
& =108
\end{align*}
$$

1
[CBSE Marking Scheme, 2018]
Detailed Solution:

Q. 5. How many terms of the A.P. $-6, \frac{-11}{2},-5,-\frac{9}{2} \ldots .$. are needed to give their sum zero.

A [CBSE Delhi comptt. Set-III, 2017]
[CBSE Delhi Set-III, 2016]
Sol. Given $a=-6$ and $d=-\frac{11}{2}-(-6)=\frac{1}{2}$
Since,

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Let sum of n terms be zero.
$\therefore \quad S_{n}=0$
or, $\frac{n}{2}\left[2 \times-6+(n-1) \frac{1}{2}\right]=0$
or, $\quad \frac{n}{2}\left[-12+\frac{n}{2}-\frac{1}{2}\right]=0$
or, $\quad \frac{n}{2}\left[\frac{n}{2}-\frac{25}{2}\right]=0$
or, $\quad n^{2}-25 n=0$ $1+1 / 2$

$$
n(n-25)=0
$$

Q. 7. Reshma wanted to save at least ₹ 6,500 for sending her daughter to school next year (after 12 months). She saved ₹ 450 in the first month and raised her savings by ₹ 20 every next month. How much will she be able to save in next 12 months? Will she be able to send her daughter to the school next year?

C [Foreign Set-I, II, III, 2016]
[CBSE Delhi Term-II Set-I, II, III, 2015]

$$
n=25 \quad \text { as } n \neq 0
$$

Sol. Here $a=₹ 450, d=₹ 20, n=12$

$$
\begin{align*}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{12} & =\frac{12}{2}[2 \times 450+11 \times 20] \\
& =6[1120] \\
& =6720>6500 \tag{2}
\end{align*}
$$

\therefore Reshma will be able to send her daughter to school.
[CBSE Marking Scheme, 2016]
Q. 8. In an A.P., if $S_{5}+S_{7}=167$ and $S_{10}=235$, then find the A.P., where S_{n} denotes the sum of first n terms.

A [CBSE Board, Term-2 2015]

Sol. $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Given, $\quad S_{5}+S_{7}=167$
Hence, $\frac{5}{2}(2 a+4 d)+\frac{7}{2}(2 a+6 d)=167$
or, $\quad 24 a+62 d=334$
or

$$
\begin{aligned}
& 24 a+62 d=334 \\
& 12 a+31 d=167
\end{aligned}
$$

..(i) $1 / 2$

Given,

$$
S_{10}=235
$$

or, $5(2 a+9 d)=235$
or

$$
\begin{equation*}
2 a+9 d=47 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii), wet get

$$
a=1 \text { and } d=5
$$

Hence

$$
\text { A.P. }=1,6,11, \ldots . \quad 1 / 2
$$

[CBSE Marking Scheme, 2015]

Short Answer Type Questions-II

AI) Q. 1. Show that the sum of all terms of an A.P. whose first term is a, the second term is b and the last term is c is equal to $\frac{(a+c)(b+c-2 a)}{2(b-a)}$.

A [CBSE OD Set-I, 2020]
Sol. Given, first term, $A=a$
and second term $=b$
\Rightarrow common difference, $d=b-a$
Last term, $l=c$
$\Rightarrow \quad A+(n-1) d=c$
[By using, $l=a+(n-1) d] 1$
$\Rightarrow \quad a+(n-1) d=c$ $a+(n-1)(b-a)=\mathrm{c}$
$\Rightarrow \quad(b-a)(n-1)=c-a$
$\Rightarrow \quad n-1=\frac{c-a}{b-a}$
$\Rightarrow \quad n=\frac{c-a}{b-a}+1$
$=\frac{c-a+b-a}{b-a}$
$\Rightarrow \quad n=\frac{b+c-2 a}{b-a}$
Now

$$
\begin{aligned}
\text { sum } & =\frac{n}{2}[\mathrm{~A}+l] \\
& =\frac{(b+c-2 a)}{2(b-a)}[a+c] \\
& =\frac{(a+c)(b+c-2 a)}{2(b-a)}
\end{aligned}
$$

Hence Proved.
(AT) Q. 2. Solve the equation: $1+4+7+10+\ldots+x=$
287.

A [CBSE Delhi OD Set-I, 2020]
Sol. Given, $a=1$ and $d=4-1=3$ $1 / 2$
Let number of terms is the series be n, then

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad 1 / 2 \\
& \Rightarrow \quad \frac{n}{2}[2 \times 1+(n-1) 3]=287 \\
& \Rightarrow \quad \frac{n}{2}[2+3 n-3]=287 \\
& \Rightarrow \quad 3 n^{2}-n-574=0
\end{aligned}
$$

$\Rightarrow 3 n^{2}-42 n+41 n-574=0$
$\Rightarrow 3 n(n-14)+41(n-14)=0$
$\Rightarrow \quad(n-14)(3 n+41)=0$
Either $n=14$ or $n=-\frac{41}{3}$, it is not possible.
Thus $14^{\text {th }}$ term is x

$$
\begin{array}{rlrl}
\therefore & & a+(n-1) d & =x \\
\Rightarrow & & x & =1+13 \times 3 \\
& & =40 . \tag{1}
\end{array}
$$

AI Q. 3. If in an A.P., the sum of first m terms is n and the sum of its first n terms is m, then prove that the sum of its first $(m+n)$ terms is $-(m+n)$.

A [CBSE OD Set-II, 2020]
Sol. Let $1^{\text {st }}$ term of series be a and common difference be d, then

$$
S_{m}=n \quad \text { (given) }
$$

$\Rightarrow \quad \frac{m}{2}[2 a+(m-1) d]=n$
$1 / 2$
$\Rightarrow \quad m[2 a+(m-1) d]=2 n$
and $\quad S_{n}=m$
$\Rightarrow \quad \frac{n}{2}[2 a+(n-1) d]=m$
$\Rightarrow \quad n[2 a+(n-1) d]=2 m$
On subtracting,

$$
\begin{align*}
& 2(n-m)=2 a(m-n)+d\left[m^{2}-n^{2}-(m-n)\right] \tag{ii}\\
& \Rightarrow \quad 2(n-m)=2 a(m-n)+d[(m-n)] \\
& {[-(m-n)-(m-n)]} \\
& \Rightarrow \quad 2(n-m)=(m-n)[2 a+d(m+n-1)] \\
& \Rightarrow \quad-2=2 a+d(m+n-1) \\
& \text { Now, } \quad S_{m+n}=\frac{m+n}{2}[2 a+(m+n-1) d] \\
& =\frac{m+n}{2}(-2) \\
& =-(m+n) \quad \text { Hence Proved. } 1
\end{align*}
$$

Q.4. Find the sum of all 11 terms of an A.P. whose middle term is 30 . A [CBSE OD Set-II, 2020]
Sol. In an A.P. with 11 terms,

$$
\begin{align*}
\text { middle term } & =\frac{11+1}{2} \text { term } \\
& =6^{\text {th }} \text { term } \tag{1}
\end{align*}
$$

Now, sixth term i.e., $a_{6}=a+(6-1) d$

$$
\begin{equation*}
\text { i.e., } \quad a+5 d=30 \tag{i}
\end{equation*}
$$

$\left[\because\right.$ middle term i.e., $a_{6}=30$ (given)] 1
Now, the sum of 11 terms,

$$
\begin{aligned}
S_{11} & =\frac{11}{2}[2 a+(11-1) d] \\
& =\frac{11}{2}[2 a+10 d] \\
& =\frac{11}{2} \times 2[a+5 d] \\
& =11 \times 30 \\
& =330
\end{aligned}
$$

[from (i)]
Q. 5. If the sum of first m terms of an A.P. is the same as the sum of its first n terms, show that the sum of its first $(m+n)$ terms is zero. A [CBSE SQP, 2020]
Sol.

$$
\begin{array}{rlr}
S_{m}=S_{n} \\
\Rightarrow & \frac{m}{2}[2 a+(m-1) d]=\frac{n}{2}[2 a+(n-1 d] & \mathbf{1} \tag{1}\\
\Rightarrow 2 a(m-n)+d\left(m^{2}-m-n^{2}+n\right) & =0 & \mathbf{1} \\
\Rightarrow \quad(m-n)[2 a+(m+n-1) d] & =0 & \mathbf{1} \\
\text { or } \quad S_{m+n} & =0
\end{array}
$$

[CBSE SQP Marking Scheme, 2020]

Detailed Solution:

Sum of first m terms $=$ Sum of first n terms

$$
\begin{array}{rlrl}
\Rightarrow & S_{m} & =S_{n} & 1 / 2 \\
\frac{m}{2}[2 a+(m-1) d]=\frac{n}{2}[2 a+(n-1) d] & 1 / 2 \\
m[2 a+(m-1) d]=n[2 a+(n-1) d] & & \\
m[2 a+(m-1) d]-n[2 a+(n-1) d] & =0 & \tag{ii}\\
2 a(m-n)+[m(m-1)-n(n-1)] d & =0 & \mathbf{1} \\
2 a(m-n)+\left[m^{2}-m-n^{2}+n\right] d & =0 & \\
2 a(m-n)+[(m-n)(m+n)-(m-n)] d & =0 & \\
(m-n)[2 a+(m+n-1) d] & =0 &
\end{array}
$$

Here, $(m-n)$ is not equal to zero.
So,

$$
[2 a+(m+n-1) d]=0
$$

Hence,
$S_{m+n}=0 . \quad 1$
Q. 6. If the sum of first four terms of an A.P. is 40 and that of first 14 terms is 280 . Find the sum of its first n terms.

A [CBSE Delhi Set-I, 2019]

Detailed Solution:
Since,
Sum of n terms of an A.P.,

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad 1 / 2
$$

[a be the first term and d be the common difference]
According to question, $S_{4}=40$
$\Rightarrow \quad \frac{4}{2}[2 a+(4-1) d]=40 \quad 1 / 2$
$\Rightarrow \quad 2[2 a+3 d]=40$
$\Rightarrow \quad 2 a+3 d=20$
and

$$
\begin{equation*}
S_{14}=280 \tag{i}
\end{equation*}
$$

Sol. $S_{4}=40 \Rightarrow 2(2 a+3 d)=40 \Rightarrow 2 a+3 d=20 \quad 1 / 2$
$S_{14}=280 \Rightarrow 7(2 a+13 d)=280 \Rightarrow 2 a+13 d=401 / 2$

$$
\begin{array}{rlr}
\therefore \quad S_{n} & =\frac{n}{2}[14+(n-1) 2] & 1 / 2 \\
& =n(n+6) \text { or }\left(n^{2}+6 n\right) \quad 1 / 2
\end{array}
$$

$$
\Rightarrow \quad \frac{14}{2}[2 a+(14-1) d]=280
$$

$$
\Rightarrow \quad 7(2 a+13 d)=280
$$

$$
\Rightarrow \quad 2 a+13 d=40
$$

Solving eq. (i) and (ii), we get

$$
\begin{aligned}
a & =7 \text { and } d=2 \\
\therefore \quad S_{n} & =\frac{n}{2}[2 \times 7+(n-1) 2] \\
& =\frac{n}{2}[14+2 n-2] \\
& =\frac{n}{2}(12+2 n) \\
& =6 n+n^{2}
\end{aligned}
$$

Hence, Sum of n terms $=6 n+n^{2}$.
Solving to get $d=2$
and $a=7$
[CBSE Marking Scheme, 2019]
\qquad] $1 / 2$ $1 / 2$
$1 / 2$

Hence, Sum n terms $6 n+n^{2}$.

Topper Answer, 2019

Sol.
$a=9, d=8, \quad S_{n}=636$.
$s_{n}=\frac{n}{2}[2 a+(n-1) d]$
$636=\frac{n}{2}[18+(n-1) 8]$
$636=n(9+(n-1) 4]$
$636=n(9+4 n-4)$
$636=n(5+4 n)$
$636=5 n+4 n^{2}$
$4 n^{2}+5 n-636=0$
$4 n^{2}+53 n-48 n-636=0$
$2 \& 4 A+5$

Q. 7. How many terms of an A.P. $9,17,25, \ldots$. must be taken to give a sum of 636 ?

A [CBSE OD Set-III, 2017]

Topper Answer, 2017

Sol.

AI] Q. 8. Find the sum of n terms of the series

$$
\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots \ldots
$$

A [CBSE Delhi Set-I, III, III, 2017]
Sol. Let sum of n term be S_{n}

$$
\therefore S_{n}=\left[4-\frac{1}{n}\right]+\left[4-\frac{2}{n}\right]+\left[4-\frac{3}{n}\right]+\ldots \ldots
$$

up to n terms 1
or, $(4+4+4+\ldots .$. up to n terms $)$

$$
-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \text { up to } n \text { terms }\right)
$$

or, $(4+4+4+\ldots .$. up to n terms $)$

$$
-\frac{1}{n}(1+2+3+\ldots . . \text { up to } n \text { terms })
$$

or, $(4+4+4+\ldots .$. up to n terms $)$
$-\frac{1}{n}(1+2+3+\ldots .$. up to n terms $)$
or, $\quad 4 n-\frac{1}{n} \times \frac{n(n+1)}{2}$
$11 / 2$
or, $\quad 4 n-\frac{n+1}{2}=\frac{7 n-1}{2}$
Hence, sum of n terms $=\frac{7 n-1}{2}$
[CBSE Marking Scheme, 2017]
Q. 9. If the sum of the first 14 terms of an A.P. is 1050 and its first term is 10 , find its $20^{\text {th }}$ term.

A [CBSE OD Comptt. Set-III, 2017]

Sol. Given, $a=10$, and $S_{14}=1050$
Let the common difference of the A.P. be d. $1 / 2$

$$
\begin{aligned}
& \text { Since, } \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& \therefore \quad S_{14}=\frac{14}{2}[2 \times 10+(14-1) d] \\
& =1050 \\
& 20+13 d=\frac{1050}{7}=150 \\
& 13 d=130 \\
& d=\frac{130}{13}=10 \\
& a_{n}=a+(n-1) d \\
& a_{20}=10+19 \times 10=200 \\
& \text { Hence, } \\
& a_{20}=200 \text {. }
\end{aligned}
$$

[CBSE Marking Scheme, 2017]
Q. 10. Find the sum of all odd numbers between 0 and 50 .

A [Delhi Comptt. Set-III, 2017]
Sol. Given, $1+3+5+7+\ldots . .+49$
Let, total odd numbers of terms be n.

$$
\begin{aligned}
a_{n}=1+(n-1) \times 2 & =49 \\
(n-1) \times 2 & =49-1=48 \\
n-1 & =24 \\
n & =24+1=25 \\
S_{25} & =\frac{25}{2}(1+49) \\
& =25 \times 25 \\
& =625
\end{aligned}
$$

Hence, sum of odd numbers between 0 and 50 $=625$
[CBSE Marking Scheme, 2017]
[AI] Q. 11. If $m^{\text {th }}$ term of A.P. is $\frac{1}{n}$ and $n^{\text {th }}$ term is $\frac{1}{m}$, find the sum of first $m \boldsymbol{n}$ terms. A [CBSE Set-I, II, 2017]
Sol. Let first term of given A.P. be a and common difference be d.
$\therefore \quad a_{m}=a+(m-1) d=\frac{1}{n}$
and $a_{n}=a+(n-1) d=\frac{1}{m}$
On subtracting (ii) from (i) we get

$$
\begin{equation*}
(m-n) d=\frac{1}{n}-\frac{1}{m}=\frac{m-n}{m n} \tag{1}
\end{equation*}
$$

or, $\quad d=\frac{1}{m n}$
and

$$
a=\frac{1}{m n}
$$

Now

$$
\begin{aligned}
S_{m n} & =\frac{m n}{2}\left(2 \cdot \frac{1}{m n}+(m n-1) \frac{1}{m n}\right) \\
& =\frac{m n}{2}\left(\frac{2}{m n}+\frac{m n}{m n}-\frac{1}{m n}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{m n} & =\frac{m n}{2}\left[\frac{1}{m n}+1\right] \\
& =\frac{1}{2}[m n+1]
\end{aligned}
$$

Hence, the sum of first $m n$ terms $=\frac{1}{2}[m n+1] . \quad \mathbf{1}$
[CBSE Marking Scheme, 2017]
Q.12. Find the sum of all two digit natural numbers which are divisible by 4 .

A [Delhi Comptt. Set-II, 2017]
Sol. First two digit multiple of 4 is 12 and last is 96
So, $a=12, d=4$ and $l=96$
Let $n^{\text {th }}$ term be last term $=96$
$\therefore \quad a_{n}=a+(n-1) d=l$

$$
\begin{align*}
12+(n-1) 4 & =96 \tag{1}\\
n-1 & =21 \\
n & =21+1=22 \\
\text { Now, } \quad & =\frac{22}{2}[12+96] \\
& =11 \times 108 \\
& =1188 \tag{1}
\end{align*}
$$

$$
1
$$

[CBSE Marking Scheme, 2017]

Q. 13. Find the sum of the following series:

$5+(-41)+9+(-39)+13+(-37)+17+\ldots$.
$+(-5)+81+(-3) \quad$ A [Foreign Set-I, 2017]
Sol. The series can be written as

Hence, the Sum of the series $=860-440$

$$
=420
$$

1
Q. 14. The sum of first n terms of three arithmetic progressions are S_{1}, S_{2} and S_{3} respectively. The first term of each A.P. is 1 and common differences are 1, 2 and 3 respectively. Prove that $S_{1}+S_{3}=2 S_{2}$.

A [OD Set IIII, 2016]
Sol. Since,

$$
S_{1}=1+2+3+\ldots .+n
$$

$$
S_{2}=1+3+5+\ldots \text { upto } n \text { terms }
$$

and $\quad S_{3}=1+4+7+\ldots$ upto n terms
or,

$$
S_{1}=\frac{n(n+1)}{2}
$$

Also,
and

Now,

$$
\begin{align*}
S_{2} & =\frac{n}{2}[2 \times 1+(n-1) 2] \\
& =\frac{n}{2}[2 n]=n^{2}
\end{align*}
$$

$$
\begin{align*}
S_{3} & =\frac{n}{2}[2 \times 1+(n-1) 3] \\
& =\frac{n(3 n-1)}{2}
\end{align*}
$$

$$
\begin{aligned}
S_{1}+S_{3} & =\frac{n(n+1)}{2}+\frac{n(3 n-1)}{2} \quad 1 / 2 \\
& =\frac{n[n+1+3 n-1]}{2} \\
& =\frac{n[4 n]}{2} \\
& =2 n^{2} \\
& =2 S_{2} \quad \text { Hence Proved. } 1
\end{aligned}
$$

[CBSE Marking Scheme, 2016]
Q. 15. If the sum of the first n terms of an A.P. is $\frac{1}{2}$ [$3 n^{2}+7 n$], then find its $n^{\text {th }}$ term. Hence write its $20^{\text {th }}$ term.

A [CBSE Board Term-2, Set-II 2015]
[CBSE SQP-2016]

Sol.

$$
\begin{aligned}
S_{n} & =\frac{1}{2}\left[3 n^{2}+7 n\right] \\
S_{1} & =\frac{1}{2}\left[3 \times(1)^{2}+7(1)\right] \\
& =\frac{1}{2}[3+7] \\
& =\frac{1}{2} \times 10=5 \\
S_{2} & =\frac{1}{2}\left[3(2)^{2}+7 \times 2\right] \\
& =\frac{1}{2}[12+14] \\
& =\frac{1}{2} \times 26 \\
& =13 \\
a_{1} & =S_{1}=5 \\
a_{2} & =S_{2}-S_{1}=13-5=8 \\
d & =a_{2}-a_{1}=8-5=3
\end{aligned}
$$

Now, A.P. is $5,8,11, \ldots . . .$.

$$
\begin{aligned}
n^{\text {th }} \text { term, } a_{n} & =a+(n-1) d \\
& =5+(n-1) 3 \\
& =3 n+2
\end{aligned}
$$

Hence,

$$
\begin{align*}
& a_{20}=3 \times 20+2 \\
& a_{20}=62
\end{align*}
$$

[CBSE Marking Scheme, 2015]
Q. 16. Aditi required ₹ 2500 after 12 weeks to send her daughter to school. She saved ₹ 100 in the first week and increased her weekly saving by $₹ 20$ every week. Find whether she will be able to send her daughter after 12 weeks.

C [CBSE Board Term-2, Set-I, II, III, 2015]
Sol. Here, required money is ₹ 2500
$a=$ saving in $1^{\text {st }}$ week $=₹ 100$
$d=$ difference in weekly saving $=₹ 20$
A.P. formed by saving,

According to the question,
Sequence is $100,120,140, \ldots .$. upto 12 terms

$$
\begin{align*}
& \because \quad S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& \therefore \quad S_{12}=\frac{12}{2}[2 \times 100+(12-1) \times 20] \\
& \text { or, } \quad=6[200+11 \times 20] \\
& \text { or, } \quad=6[200+220] \\
& \text { or, } \quad=6 \times 420 \\
& =2520 \tag{3}
\end{align*}
$$

She will be able to send her daughter to school after 12 weeks.
[CBSE Marking Scheme, 2015]
Q. 17. If S_{n} denotes, the sum of the first n terms of an A.P. prove that $S_{12}=3\left(S_{8}-S_{4}\right)$.

A [CBSE Delhi Board, Set-I, 2015]
Sol. Let a be the first term and d be the common difference.

Since,

$$
\begin{align*}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{12} & =6[2 a+11 d] \\
& =12 a+66 d \tag{i}\\
S_{8} & =4[2 a+7 d] \\
& =8 a+28 d \\
S_{4} & =2[2 a+3 d] \\
& =4 a+6 d
\end{align*}
$$

and

Then,

$$
\begin{align*}
3\left(S_{8}-S_{4}\right) & =3[(8 a+28 d)-(4 a+6 d)] \\
& =3[4 a+22 d] \\
& =12 a+66 d \tag{1}
\end{align*}
$$

From equation (i) and (ii), $S_{12}=3\left(S_{8}-S_{9}\right)$
[CBSE Marking Scheme, 2015]
Q. 18. The $14^{\text {th }}$ term of an A.P. is twice its $8^{\text {th }}$ term. If the $6^{\text {th }}$ term is -8 , then find the sum of its first 20 terms.

A [CBSE OD Set-I, 2015] [Foreign Set-I, II, 2015]

Sol. Let first term be a and common difference be d.
Here,

$$
\begin{aligned}
a_{14} & =2 a_{8} \\
a+13 d & =2(a+7 d) \\
a+13 d & =2 a+14 d
\end{aligned}
$$

$$
\begin{equation*}
a=-d \tag{i}
\end{equation*}
$$

Again,

$$
a_{6}=-8
$$

or,

$$
a+5 d=-8
$$

Solving (i) and (ii), we get

$$
\begin{aligned}
a=2, d & =-2 \\
S_{20} & =\frac{20}{2}[2 \times 2+(20-1)(-2)] \quad 1 / 2 \\
& =10[4+19 \times(-2)] \\
& =10(4-38) \\
& =10 \times(-34)=-340
\end{aligned}
$$

[CBSE Marking Scheme, 2015]

Long Answer Type Questions

AI Q. 1. Solve: $1+4+7+10+\ldots+x=287$.
A [CBSE Delhi Set-I, 2020]
Sol. See the solution of Q. 2. from Short Answer Type Question-II.
(AI) Q. 2. The first term of an A.P. is 3, the last term is 83 and the sum of all its terms is 903 . Find the number of terms and the common difference of the A.P..
[CBSE Delhi Set-II, 2019]
Sol. Here $a=3, a_{n}=83$ and $S_{n}=903$
Therefore $\quad 83=3+(n-1) d$
$\Rightarrow \quad(n-1) d=80$
Also
$903=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}(6+80)$
$=43 n \quad(\operatorname{using}(\mathrm{i})) 1+1 / 2$
$\Rightarrow \quad n=21$
and $\quad d=4 \quad 1+\frac{1}{2}$
[CBSE Marking Scheme, 2019]

Detailed Solution:

Given:

First term, $a=3$
Last term, $a_{n}=83$
Sum of n terms, $S_{n}=903$
Since, $\quad S_{n}=\frac{n}{2}\left(a+a_{n}\right)$

$$
S_{n}=\frac{n}{2}\left(a+a_{n}\right)
$$

$\Rightarrow \quad 903=\frac{n}{2}(3+83)$
$\Rightarrow \quad 1806=86 n$
$\Rightarrow \quad n=\frac{1806}{86}$
$\Rightarrow \quad n=21$
Now, $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow \quad 903=\frac{21}{2}[2 \times 3+(21-1) d]$
$\Rightarrow \quad 1806=21(6+20 d)$
$\Rightarrow \quad 6+20 d=86$
$\Rightarrow \quad 20 d=80$
$\Rightarrow \quad d=4$
Hence, the common difference is 4 .

COMMONLY MADE ERROR

- Some students fail to find the value of n as they get confused between the $n^{\text {th }}$ term and last term.

ANSWERING TIP

- Understand the formulae related to given condition and use them to solve the problems.
(AI) Q. 3. If the ratio of the sum of the first n terms of two A.Ps is $(7 n+1):(4 n+27)$, then find the ratio of their 9th terms.

A [CBSE OD Set III 2017] [CBSE OD Set-I, 2016]

Q. 4. The ratio of the sums of first m and first n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of its $m^{\text {th }}$ and $n^{\text {th }}$ terms is $(2 m-1):(2 n-1)$.
[CBSE Delhi Set-I, 2017]
Sol. Let first term of given A.P. be a and common difference be d also sum of first m and first n terms be \underline{S}_{m} and S_{n} respectively.
$\therefore \quad \frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}}$
or, $\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
or, $\quad \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m^{2}}{n^{2}} \times \frac{n}{m}=\frac{m}{n}$
1
or, $\quad m(2 a+(n-1) d)=n[2 a+(m-1) d]$

$$
d=2 a
$$

Now

$$
\frac{a_{m}}{a_{n}}=\frac{a+(m-1) d}{a+(n-1) d}
$$

$$
=\frac{a+(m-1) \times 2 a}{a+(n-1) \times 2 a}
$$

or, $\quad \frac{a+2 m a-2 a}{a+2 n a-2 a}=\frac{2 m a-a}{2 n a-a}$

$$
\begin{aligned}
& =\frac{a(2 m-1)}{a(2 n-1)} \\
& =2 m-1: 2 n-1
\end{aligned}
$$

Hence Proved.
[AI] Q. 5. If the $p^{\text {th }}$ term of an A.P. is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p}$.
Prove that the sum of first $p q$ term of the A.P. is $\left[\frac{p q+1}{2}\right]$.
[CBSE Delhi Set-III, 2017]
Sol. Try yourself similar to Q.No. 11 of VSATQ-II.
Q. 6. If the ratio of the $11^{\text {th }}$ term of an A.P. to its $18^{\text {th }}$ term is $2: 3$, find the ratio of the sum of the first five term to the sum of its first 10 terms.
[Delhi Comptt. Set-I, II, III, 2017]

Sol. Since, $\quad \frac{a_{11}}{a_{18}}=\frac{a+10 d}{a+17 d}=\frac{2}{3}$
or, $\quad 2(a+17 d)=3(a+10 d)$

$$
\begin{equation*}
a=4 d \tag{1}
\end{equation*}
$$

Now, $\quad \frac{S_{5}}{S_{10}}=\frac{\frac{5}{2}(2 a+4 d)}{\frac{10}{2}[2 a+9 d]}$
Putting the value of $a=4 d$, we get
or, $\quad \frac{S_{5}}{S_{10}}=\frac{\frac{5}{2}(8 d+4 d)}{5(8 d+9 d)}$

$$
\frac{12 d}{34 d}=\frac{6}{17}
$$

Hence, $\quad S_{5}: S_{10}=6: 17$.
Q. 7. An A.P. consists of 37 terms. The sum of the three middle most terms is 225 and the sum of the last three terms is 429. Find the A.P. [CBSE SQP, 2017]
Sol. Let the middle most terms of the A.P. be $(a-d)$, a and $(a+d)$.
Given, $a-d+a+a+d=225$
or, $\quad 3 a=225$
or, $\quad a=75$
and the middle term $=\frac{37+1}{2}=19^{\text {th }}$ term
\therefore A.P. is
$(a-18 d), \ldots . .,(a-2 d),(a-d), a,(a+d),(a+2 d), \ldots .$,
$(a+18 d)$
1
Sum of last three terms
$(a+18 d)+(a+17 d)+(a+16 d)=429$
or, $\quad 3 a+51 d=429$
or, $\quad 225+51 d=429$ or, $d=4$
First term, $a_{1}=a-18 d=75-18 \times 4=3$.

$$
\begin{equation*}
a_{2}=3+4=7 \tag{1}
\end{equation*}
$$

Hence, A.P. $=3,7,11$, , 147.
Q. 8. The minimum age of children to be eligible to participate in a painting competition is 8 years. It is observed that the age of youngest boy was 8 years and the ages of rest of participants are having a common difference of 4 months. If the sum of ages
of all the participants is 168 years, find the age of eldest participant in the painting competition.

C [CBSE SQP, 2016]
Sol. Here, $a=8, d=4$ months $=\frac{1}{3}$ years and
$S_{n}=168$
Since $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Hence, $\quad 168=\frac{n}{2}\left[2(8)+(n-1) \frac{1}{3}\right]$

$$
\begin{equation*}
n^{2}+47 n-1008=0 \tag{1}
\end{equation*}
$$

or, $n^{2}+63 n-16 n-1008=0$
or, $\quad(n-16)(n+63)=0$
or, $\quad n=16$ or $n=-63$

$$
n=16
$$

(n cannot be negative So -63 rejected) 1 Thus, the age of the eldest participant $=a+15 d$ = 13 years [CBSE Marking Scheme, 2016] 1
Q. 9. A thief runs with a uniform speed of $100 \mathrm{~m} /$ minute. After one minute a policeman runs after, the thief to catch him. He goes with a speed of $100 \mathrm{~m} /$ minute in the first minute and increases his speed by $10 \mathrm{~m} /$ minute every succeeding minute. After how many minutes the policeman will catch the thief.

C [CBSE Delhi Set I, II, 2016]
Sol. Let total time to catch the thief be n minutes.
Then, total distance covered by thief $=(100 n)$ metres $1 / 2$
Total distances to be covered by policeman $=100$

$$
+110+120+\ldots+(n-1) \text { terms } \quad \mathbf{1}
$$

$\therefore \quad 100 n=\frac{n-1}{2}[200+(n-2) 10]$

$$
\begin{aligned}
n^{2}-3 n-18 & =0 \\
(n-6)(n+3) & =0 \\
n & =6
\end{aligned}
$$

Policeman takes 6 minutes
[CBSE Marking Scheme, 2016]

Visual Case Based Questions

Note: Attempt any four sub parts from each question. Each sub part carries 1 mark
Q. 1. India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in $9^{\text {th }}$ year.
[CBSE QB, 2021]

Based on the above information, answer the following questions:
(i) Find the production during first year.

Sol. ₹ 5000

$$
\text { Explanation: } \begin{align*}
a_{6} & =16,000 \\
a+(n+1) d & =16,000 \\
a+(6-1) d & =16,000 \\
a+5 d & =16,000 \tag{i}\\
a_{9} & =22,600 \\
a+(n-1) d & =22,600 \\
a+(9-1) d & =22,600 \\
a+8 d & =22,600 \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii)

$$
\begin{aligned}
a+5 d & =16,000 \\
a+8 d & =22,600 \\
-\quad-\quad & - \\
\hline-3 d & =-6,600 \\
d & =2,200
\end{aligned}
$$

Now, putting $d=2,200$ in equation (i)

$$
\begin{aligned}
a+5 d & =16,000 \\
a+5 \times 2,200 & =16,000 \\
a+11,000 & =16,000 \\
a & =5,000
\end{aligned}
$$

(ii) Find the production during $8^{\text {th }}$ year.

Sol. Production during $8^{\text {th }}$ year is $(a+7 d)$

$$
\begin{aligned}
& =5000+2(2200) \\
& =20400
\end{aligned}
$$

(iii) Find the production during first 3 years.

Sol. Production during first 3 year

$$
\begin{aligned}
& =5000+7200+9400 \\
& =21600
\end{aligned}
$$

(iv) In which year, the production is ₹ 29,200.

Sol. $N=12$
Explanation: $\quad a_{n}=29,200$

$$
\begin{aligned}
a+(n-1) d & =29,200 \\
(x-1) 2,900 & =29,200-5,000 \\
2,200 n-2,200 & =24,200 \\
2200 n & =26,400 \\
n & =\frac{26,400}{2,200} \\
n & =12
\end{aligned}
$$

(v) Find the difference of the production during $7^{\text {th }}$ year and $4^{\text {th }}$ year.
Sol. Difference $=18200-11600=6600$
Q. 2. Your friend Veer wants to participate in a 200 m race. He can currently run that distance in 51 seconds and with each day of practice it takes him 2 seconds less. He wants to do in 31 seconds.
[CBSE QB, 2021]

(i) Which of the following terms are in AP for the given situation
(a) $51,53,55 \ldots$
(b) $51,49,47 \ldots$
(c) $-51,-53,-55 \ldots$
(d) $51,55,59 \ldots$

Sol. Correct option: (b).
Explanation: $\quad a=51$

$$
\begin{aligned}
d & =-2 \\
A P & =51,49,47 \ldots . . .
\end{aligned}
$$

(ii) What is the minimum number of days he needs to practice till his goal is achieved ?
(a) 10
(b) 12
(c) 11
(d) 9

Sol. Correct option: (c).
Explanation: Goal $=31$ second

$$
\therefore \begin{aligned}
n & =\text { number of days } \\
a_{n} & =31 \\
a+(n-1) d & =31 \\
51+(n-1)(-2) & =31 \\
51-2 n+2 & =31 \\
-2 n & =31-53 \\
-2 n & =-22 \\
n & =11
\end{aligned}
$$

(iii) Which of the following term is not in the AP of the above given situation
(a) 41
(b) 30
(c) 37
(d) 39

Sol. Correct option: (b).
(iv) If $n^{\text {th }}$ term of an AP is given by $a_{n}=2 n+3$ then common difference of an AP is
(a) 2
(b) 3
(c) 5
(d) 1

Sol. Correct option: (a).
(v) The value of x, for which $2 x, x+10,3 x+2$ are three consecutive terms of an AP
(a) 6
(b) -6
(c) 18
(d) -18

Sol. Correct option: (a).
Explanation: Since, $2 x, x+10,3 x+2$ are in AP , this common difference will remain same.

$$
\begin{aligned}
x+10-2 x & =(3 x+2)-(x+10) \\
10-x & =2 x-8 \\
2 x & =18 \\
x & =6
\end{aligned}
$$

Q. 3. Your elder brother wants to buy a car and plans to take loan from a bank for his car. He repays his total loan of ₹ $1,18,000$ by paying every month starting with the first instalment of $₹ 1000$. If he increases the instalment by ₹ 100 every month, answer the following:
[CBSE QB, 2021]

(i) The amount paid by him in $30^{\text {th }}$ installment is
(a) 3900
(b) 3500
(c) 3700
(d) 3600

Sol. Correct option: (a).
Explanation: $\quad a=1000$

$$
\begin{aligned}
d & =100 \\
a_{80} & =a+(n-1) d \\
& =1000+(30-1) 100 \\
& =1000+2900
\end{aligned}
$$

(ii) The amount paid by him in the 30 installments is
(a) 37000
(b) 73500
(c) 75300
(d) 75000

Sol. Correct option: (b).
Explanation: Sum of 30 installments

$$
\begin{aligned}
& =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{30}{2}[2 \times 1000+(30-1) 100] \\
& =15[2000+2900] \\
& =15 \times 4900 \\
& =73500
\end{aligned}
$$

Total Amount paid in 30 installments $=₹ 73500$
(iii) What amount does he still have to pay after 30th installment?
(a) 45500
(b) 49000
(c) 44500
(d) 54000

Sol. Correct option: (c).
(iv) If total installments are 40 then amount paid in the last installment ?
(a) 4900
(b) 3900
(c) 5900
(d) 9400

Sol. Correct option: (a).
Explanation: Amount paid in $40^{\text {th }}$ installment, a_{40}

$$
\begin{aligned}
& =a+(n-1) d \\
& =1000+(40-1) 100 \\
& =1000+3900 \\
& =5900
\end{aligned}
$$

(v) The ratio of the $1^{\text {st }}$ installment to the last installment is
(a) $1: 49$
(b) $10: 49$
(c) $10: 39$
(d) $39: 10$

Sol. Correct option: (b).
(AI) Q. 4. Jaspal Singh takes a loan from a bank for his car. Jaspal Singh repays his total loan of ₹ 118000 by paying every month starting with the first installment of $₹ 1000$. If he increases the installment by ₹ 100 every month.

(i) If the given problem is based on A.P., then what is the first term and common difference?
(a) 1000,100
(b) 100,1000
(c) 100,100
(d) 1000,1000

Sol. Correct option: (a).
Explanation: The number involved in this case form an A.P. in which first term $(a)=1000$ and common difference $(d)=100$.
(ii) The amount paid by him in $25^{\text {th }}$ installment is:
(a) ₹ 3300
(b) ₹ 3200
(c) ₹ 3400
(d) ₹ 3500

Sol. Correct option: (c).
Explanation: The amount paid by him in $25^{\text {th }}$ installment is:

$$
\begin{aligned}
T_{25} & =a+24 d \\
& =1000+24 \times 100 \\
& =1000+2400 \\
& =₹ 3400 .
\end{aligned}
$$

(iii) The amount paid by him in $30^{\text {th }}$ installment is
(a) ₹ 3900
(b) ₹ 3500
(c) ₹ 3000
(d) ₹ 3600

Sol. Correct option: (a).
Explanation: The amount paid by him in $30^{\text {th }}$ installment,

$$
\begin{aligned}
T_{30} & =a+29 d \\
& =1000+29 \times 100 \\
& =1000+2900 \\
& =₹ 3900 .
\end{aligned}
$$

(iv) The total amount paid by him in $25^{\text {th }}$ and $30^{\text {th }}$ installment is:
(a) ₹ 7500
(b) ₹ 7300
(c) ₹ 7800
(d) ₹ 7600

Sol. Correct option: (b).
Explanation: Total amount paid by him in $25^{\text {th }}$ and $30^{\text {th }}$ installment $=₹(3400+3900)$

$$
\text { = ₹ } 7300 .
$$

(v) The difference amount paid by him in $26^{\text {th }}$ and $28^{\text {th }}$ installment is:
(a) ₹ 400
(b) ₹ 100
(c) ₹ 500
(d) ₹ 200

Sol. Correct option: (d).
Explanation: The amount paid by him in $26^{\text {th }}$ installment,

$$
\begin{aligned}
T_{26} & =a+25 d \\
& =1000+25 \times 100 \\
& =1000+2500 \\
& =₹ 3500
\end{aligned}
$$

The amount paid by him in $28^{\text {th }}$ installment,

$$
\begin{aligned}
T_{28} & =a+27 d \\
& =1000+27 \times 100 \\
& =1000+2700 \\
& =₹ 3700
\end{aligned}
$$

\therefore The difference amount paid by him in $26^{\text {th }}$ and $28^{\text {th }}$ installment is:

$$
\begin{aligned}
& =₹(3700-3500) \\
& =₹ 200 .
\end{aligned}
$$

Q. 5. A ladder has rungs 25 cm apart. (see the below).

The rungs decrease uniformly in length from 45 cm at the bottom to 25 cm at the top. The top and the bottom rungs are $2 \frac{1}{2} \mathrm{~m}$ apart.
(i) The top and bottom rungs are apart at a distance:
(a) 200 cm
(b) 250 cm
(c) 300 cm
(d) 150 cm

Sol. Correct option: (b).
Explanation: Since the top and the bottom rungs are apart by $2 \frac{1}{2} \mathrm{~m}=\frac{5}{2} \mathrm{~m}$

$$
\begin{aligned}
& =\frac{5}{2} \times 100 \mathrm{~cm} \\
& =250 \mathrm{~cm}
\end{aligned}
$$

(ii) Total number of the rungs is:
(a) 20
(b) 25
(c) 11
(d) 15

Sol. Correct option: (c).
Explanation: The distance between the two rungs is 25 cm .

$$
\text { Hence, the total number of rungs } \begin{aligned}
& =\frac{250}{25}+1 \\
& =11
\end{aligned}
$$

(iii) The given problem is based on A.P. find its first term.
(a) 25
(b) 45
(c) 11
(d) 13

Sol. Correct option: (a).
Explanation: The length of the rungs increases from 25 to 45 and total number of rungs is 11.
Thus, this is in the form of an A.P., whose first term is 25 .
(iv) What is the last term of A.P. ?
(a) 25
(b) 45
(c) 11
(d) 13

Sol. Correct option: (b).
Explanation: Total number of terms, $n=11$ and the last term, $T_{11}=45$.
(v) What is the length of the wood required for the rungs ?
(a) 385
(b) 538
(c) 532
(d) 382

Sol. Correct option: (a).
Explanation: The required length of the wood,

$$
\begin{aligned}
S_{11} & =\frac{11}{2}[25+45] \\
& =\frac{11}{2} \times 70 \\
& =385 \mathrm{~cm}
\end{aligned}
$$

SELF ASSESSMENT TEST - 2

Q.1. For what value of k, do the equation $3 x-y+8=0$ and $6 x-k y=-16$ represent coincident lines?
Q. 2. Given that one of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ is zero, then find the product of the other two zeroes.

R
Q. 3. If the zeroes of the quadratic polynomial $x^{2}+(a+$ 1) $x+b$ are 2 and -3 , then find the value of a. R
Q.4. If in the equation $x+2 y=10$, the value of y is 6 , then find the value of x.
Q. 5. Find the value of p for which $3 x^{2}-5 x+p=0$ has equal roots.
Q. 6. The students of a school decided to beautify the school on the Annual Day by fixing colourful flags on the straight passage of the school. They have 27 flags to be fixed at intervals of every 2 m . The flags are stored at the position of the middle most flag. Ruchi was given the responsibility of placing the flags. Ruchi kept her books where the flags were stored. She could carry only one flag at a time.

(i) What is the position of middle most flag ?
(a) $13^{\text {th }}$
(b) $13.5^{\text {th }}$
(c) $14^{\text {th }}$
(d) $12.5^{\text {th }}$
(ii) How many flags are left and right to the middle flag ?
(a) 14,12
(b) 13, 13
(c) 13,14
(d) 14,13
(iii) How much distance did she cover in completing this job and returning back to collect her books?
(a) 339 m
(b) 634 m
(c) 364 m
(d) 346 m
(iv) What is the maximum distance she travelled carrying a flag ?
(a) 13 m
(b) 52 m
(c) 27 m
(d) 26 m
(v) What is the mathematical concept related to this question?
(a) A.P.
(b) Lines
(c) Linear equations
(d) none of these
Q. 7. If p and q are the zeroes of polynomial
$f(x)=2 x^{2}-7 x+3$, find the value of $p^{2}+q^{2}$.
(AI) Q. 8. Find the sum of the integers between 100 and 200 that are divisible by 6. A [Board Term-2, 2012]
Q. 9. How many three digit numbers are such that when divided by 7 , leave a remainder 3 in each case?
[Board Term-2, 2012 Set (1)]
Q. 10.If $\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)=(a x+b y)^{2}$. Prove that $\frac{x}{a}=\frac{y}{b}$.

A [Bord Term-2, 2014]
(AI) Q. 11. The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and the breadth is increased by 3 units. The area is increased by 67 square units if length is increased by 3 units and breadth is increased by 2 units. Find the perimeter of the rectangle.

